A SNP Effect Matrix (SEM) estimates the binding affinity of every possible mutation in a particular transcription factor (TF) binding motif. Read more about SEMs here: https://doi.org/10.1093/bioinformatics/btz612 This class contains three slots: the matrix, the baseline value, and a unique id
Slots
sem
The SEM itself as a data table Rows represent sequence position (variable length), columns represent effects due to each nucleotide base A, C, G, T (fixed length: 4)
baseline
A scrambled baseline, representing the binding score of randomly scrambled kmers of the same length. This is the binding cutoff for a TF
semId
basename of the sem file
Examples
# build a SEM example matrix
m <- matrix(rnorm(16), nrow = 4)
colnames(m) <- c("A", "C", "G", "T")
SNPEffectMatrix(sem = m, baseline = 1, semId = "sem_id")
#> An object of class SNPEffectMatrix
#> semId: sem_id
#> baseline: 1
#> sem:
#> A C G T
#> <num> <num> <num> <num>
#> 1: -2.437263611 -1.8218177 -0.5536994 0.51242695
#> 2: -0.005571287 -0.2473253 0.6289820 -1.86301149
#> 3: 0.621552721 -0.2441996 2.0650249 -0.52201251
#> 4: 1.148411606 -0.2827054 -1.6309894 -0.05260191